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We introduce the notion of operational resolution, i.e., an isotone map from a
powerset to a poset that meets two additional conditions, which generalizes the
description of states as the atoms in a property lattice (Piron, 1976; Aerts, 1982)
or as the underlying set of a closure operator (Aerts, 1994; Moore, 1995). We
study the structure preservation of the related state transitions and show how the
operational resolution constitutes an epimorphism between two unitary quantales.

1. INTRODUCTION

In Piron (1976), the states3 of a physical entity are defined as the atoms

of the (atomistic) property lattice of that entity.4 A complementary approach,

founded in Aerts (1994), takes the collection of states of a physical entity

as the underlying set of a closure space.5 In Coecke (1998a) it is shown that

in order to describe individual entities within a compound system, a more

general definition for state is needed. In this paper we define a map, referred
to as the operational resolution, that relates states, which are allowed to be

partially ordered, to operational properties.6 For the case of a single entity,

the proposed formulation covers both `states as atoms in a property lattice’

1 Post-Doctoral Researcher at Flanders’ Fund for Scientific Research, FUND-DWIS, Free Uni-
versity of Brussels, B-1050 Brussels, Belgium; e-mail: bocoecke@vub.ac.b e.

2 AGEL-MAPA, UniversiteÂCatholique de Louvain, B-1348 Louvain-La-Neuve, Belgium; e-
mail: i.stubbe@agel.ucl.ac.be.

3 To be interpreted in an ontological sense and not as merely statistical objects.
4 For a general overview of the physical and operational motives behind this approach we refer
to Piron (1976), Aerts (1982, 1994), and Moore (1999).

5 For details, see Aerts (1994), Moore (1995, 1997, 1999), and Valckenborgh (1997).
6 The definition of operational resolution is chosen in such a way that a realist picture (Piron,
1976; Aerts, 1982; Moore, 1999) as well as a somewhat more empiricist picture (Aerts, 1994)
can be held for the emerging operational properties.
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and `states as the underlying set of a closure space.’ We show that every

operational resolution factors in a closure operator and a poset embedding

that is a lattice isomorphism on its image. Further, we identify a condition
under which state transitions, to be interpreted along the lines of Amira et
al. (1998), are structure-preserving in the sense that the operational resolution,

the state transition, and its representation within the image of the operational

resolution yield a commuting square. Explicitly, we obtain two unitary

quantales,7 one for the state transitions and one for their representation within

the image of the operational resolution, between which the operational resolu-
tion determines a unitary quantale epimorphism. At the end of this paper

we sketch some possible further developments involving aspects of ortho-

complementation.

2. OPERATIONAL RESOLUTION

Definition 1. For a given collection of states S , an operational resolution

is defined as a map #pr: 3( S ) ® +, with as codomain a poset,8 (+, # ),

such that the following conditions are met (all T, T9, Ti P 3( S )):

T # T 8 Þ #pr(T ) # #pr(T 8) (1)

" i: #pr(Ti) # #pr(T ) Þ #pr( ø i Ti) # #pr(T ) (2)

T Þ 0¤ Þ #pr(T ) Þ #pr( 0¤) (3)

In the presence of Eq. (1), one easily verifies that Eq. (2) is equivalent to

" i: #pr(Ti) # #pr(T ) Þ #pr(T ø ( ø i Ti)) 5 #pr(T ). As a first example, we

have the following `minimal’ operational resolution: for a poset + containing

{0, 1}, set #pr( 0¤) 5 0 and, for any 0¤ Þ T # S , #pr(T ) 5 1. + 5 {0, 1} is

the `optimal’ codomain for this prescription for #pr in the sense that it makes

#pr surjective. A `maximal’ example is the following: + 5 3( S ) and #pr 5
id+. This prescription for #pr works for any poset + that contains 3( S ) with

3( S ) itself as the `optimal’ partner for this particular #pr.

We recall that a set S equipped with an operator #: 3( S ) ® 3( S ) is

called `closure space,’ and # is called `closure operator ’ or `closure’ if the

following conditions are met for all T, T 8 P 3( S ): (C1) T # #(T ); (C2)
T # T 8 Þ #(T ) # #(T 8); (C3) #(#(T )) 5 #(T ); (C4)9 #( 0¤) 5 0¤. The

closure is called `T1’ if in addition the following is met: (C5) #( {t}) 5 {t}

for all t P S . A set F # S is called `closed’ if #(F ) 5 F. The collection of

7 A quantale is a complete lattice equipped with a not-necessarily commutative product & which
distributes over arbitrary joins. They were introduced in Mulvey (1986); for an overview we
refer to Rosenthal (199 0).

8 Poset is short for ª partially ordered set.º
9 Note that this condition is not a standard one.
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closed subsets will be denoted by ^( S ) and constitutes a complete lattice,

where Ù i Fi 5 ù i Fi and Ú i Fi 5 #( ø i Fi). Remark that ^( S ) is a complete

atomistic lattice if the closure is T1 : its atoms are exactly the singletons. If
( S , #) is a closure space, then for + 5 ^( S ) a surjective operational resolution

is #pr: 3( S ) ® ^( S ): T j #(T ). More generally, if u : ^( S ) ® + is a poset

embedding that is a lattice isomorphism on its image, then #pr 5 u + #:

3( S ) ® + is an operational resolution. A type of operational resolution that

is `derived’ from this situation is extensively studied in Amira et al. (1998):

We considered as S the states of an entity described by an atomistic property
lattice +, and #pr 5 m 2 1 + #: S ® + where # is the closure on S which

has {Fa : 5 {p P S ) p # a }) a P + } as closed subsets and where m 2 1 is the

inverse of the Cartan representation m : a j Fa.

As last example we consider the following situation: (i) #pr(1): 3( S 1) ®
+: T j #pr(1,2) (T 3 S 2); (ii) #pr(2): 3( S 2) ® +: T j #pr(1,2) ( S 1 3 T );

(iii) #pr(1,2): 3( S 1 3 S 2) ® +: T j #pr(1) ( p 1(T )) Ù #pr(2) ( p 2(T )) with p 1:
3 ( S 1 3 S 2) ® 3( S 1) and p 2: 3( S 1 3 S 2) ® 3( S 2) the respective Cartesian

projections. The reader might identify in this an implementation of the notion

of coproducts1 0 im(#pr(1)) q im (#pr(2)) 5 im(#pr(1,2)) of the category of com-

plete lattices, where the lattice structure of these images is assured by some

results that we will prove further in this paper.
The image of #pr (that is, im(#pr) 5 {#pr (T ) ) T P 3( S ) }) is a subset

of +, thus it inherits the partial order # of +. The next proposition shows

that im(#pr) is a complete lattice.

Proposition 1. The poset (im(#pr), # ) is a complete lattice with respect

to the following definition for `join’ : " {Ti}i # 3( S ): Ú i #pr(Ti) : 5 #pr( ø i

Ti). Its bottom element is #pr( 0¤) and its top element is #pr( S ).

Proof. Due to Eq. (1) we have " i: #pr(Ti) # #pr( ø i Ti). Suppose that

there exists T 8 # S such that " i: #pr(Ti) # #pr(T 8). Then, due to Eq. (2),

#pr( ø i Ti) # #pr(T 8), and thus Ú i #pr(Ti) is indeed the lub of {#pr (Ti) }i. The

rest of the claim is evident. n

The poset + reversely structurizes S through #pr. Below we study this

structure, and we show how the conditions on #pr generalize the notion of

a closure operator on a set. In particular, we associate to an operational

resolution #pr a collection of #pr-closed subsets of S .

Definition 2. We call T P 3( S ) #pr-closed if and only if for any T 8 P
3( S ) we have that T 8 . T Þ #pr(T 8) . #pr(T ).

10 The coproduct Ð see, for example, Borceux (1994) Ð is considered by some authors as a
description for compound physical systems (Aerts, 1984). For more details on the description
of compound systems within the context of operational resolutions and state transitions we
refer to Coecke and Stubbe (1999).
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We denote the collection of #pr-closed subsets of S by ^pr( S ). It is

evident from Eq. (3) that 0¤ is #pr-closed, S is trivially #pr-closed. We will

now work toward a characterization of ^pr( S ). We need two lemmas.

Lemma 1. Define a relation on 3( S ) as follows: T , T 8 Û #pr(T )

5 #pr(T 8).

(i) , is an equivalence relation.

Denoting the equivalence class of T P 3( S ) as [T ], then:

(ii) ø [T ] : 5 ø {T 8 ) T 8 P [T ] } P [T ].

(iii) ø [T ] P ^pr( S ).

(iv) [T ] contains no other #pr-closed elements than ø [T ].

(v) [ 0¤] 5 {0¤}.

Proof. (i) Trivial verification. (ii) #pr(T ) # #pr( ø [T ]) is immediate from

the application of Eq. (1) on the trivial fact that T # ø [T ]. On the other

hand, we have that " T 8 P [T ]: #pr(T 8) 5 #pr(T ), from which it follows by

Eq. (2) that #pr ( ø [T ]) # #pr(T ). Hence we conclude that #pr(T ) 5 #pr( ø [T ])

and thus ø [T ] P [T ]. (iii) For any T 8 . ø [T ] we have by application of
Eq. (1) that #pr(T 8) $ #pr( ø [T ]). Suppose that #pr(T 8) 5 #pr( ø [T ]); then,

using (ii) gives that #pr(T 8) 5 #pr(T ), hence T 8 P [T ] and T 8 # ø [T ],

which contradicts the assumption. We conclude that T 8 . ø [T ] implies

#pr(T 8) . #pr( ø [T ]), thus ø [T ] is #pr-closed. (iv) Let F P [T ] be #pr-

closed; then it follows, using (ii), that #pr(F ) 5 #pr(T ) 5 #pr( ø [T ]), and
also ø [T ] $ F. Suppose that ø [T ] . F ; then the #pr-closedness of F implies

#pr( ø [T ]) . #pr(F ), which leads to a contradiction. Hence F 5 ø [T ]. (v)

Immediate from Eq. (3). n

Lemma 2. The maps

(i) f : 3( S )/ , ® ^pr( S ): [T ] j ø [T ]

(ii) c : ^pr( S ) ® im(#pr): F j #pr(F )

are bijections with, as respective inverses,

(iii) f 2 1: ^pr( S ) ® 3 ( S )/ , : F j [F ]

(iv) c 2 1: im(#pr) ® ^pr( S ): #pr(T ) j ø [T ]

Proof. Straightforward verifications. n

Proposition 1 shows that im(#pr) is a complete lattice, for it inherits the

partial order from + and we constructed a join Ú . Also ^pr( S ) can be equipped
in a natural way with a join: the join of {Fi}i # ^pr( S ) is the smallest element

of ^pr( S ) that contains all the Fi. Equivalently: the join of {F i}i # ^pr( S )

is the smallest element of ^pr( S ) that contains ø i Fi. In anticipation of the

following proposition, we will denote this join in ^pr( S ) by Ú i F i.
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Proposition 2. For (^pr( S ), Ú ) we have that:

(i) Ú i Fi 5 ø [ ø i Fi].
(ii) ^pr ( S ) > im(#pr).

Proof. (i) Obviously ø i Fi # ø [ ø i F i], and by part (iii) of Lemma 1 we

know that ø [ ø i Fi] P ^pr( S ). If ø i Fi is #pr-closed, then we have by Lemma

1, part (ii), that ø [ ø i Fi] 5 ø i Fi and then indeed Ú i F i 5 ø i Fi 5 ø [ ø i F i].

Now consider the case where ø i Fi is not #pr-closed, and suppose that there
is an F P ^pr( S ) such that ø i Fi , F , ø [ ø i Fi]. Then by Eq. (1) we have

that #pr( ø i Fi) # #pr(F ) and by #pr-closedness of F we have that #pr(F ) ,
#pr( ø [ ø i F i]) 5 * #pr( ø i Fi), using Lemma 1, part (ii), for * . This leads to a

contradiction, thus there cannot be such an F. (ii) It is enough to check

whether c and c 2 1 preserve joins, because then they are order-preserving

bijections, thus they yield a lattice isomorphism. We have c ( Ú i F i) 5
c ( ø [ ø i Fi]) 5 #pr( ø [ ø i F i]) 5 #pr( ø i F i) 5 Ú i#pr (F i) 5 Ú i c (Fi), and con-

versely, c 2 1 ( Ú i#pr(Ti)) 5 c 2 1(#pr( ø i Ti)) 5 ø [ ø i Ti] 5 * ø [ ø i ( ø [Ti])] 5 Ú i

( ø [Ti]) 5 Ú i c 2 1(#pr(Ti)). In both reasonings we used (i) of this proposition,

part (ii) of Lemma 1, and the definition for the join in im(#pr); cf. Proposition

1. The validity of * follows from part (ii) of Lemma 1: " i: #pr(Ti) 5 #pr( ø [Ti])

Þ Ú i#pr(Ti) 5 Ú i#pr( ø [Ti]) Þ #pr( ø i Ti) 5 #pr ( ø i ( ø [Ti])) Þ [ ø i Ti] 5
[ ø i ( ø [Ti])] Þ ø [ ø i Ti] 5 ø [ ø i ( ø [Ti])]. n

In the examples we showed how a closure space ( S , #) and a poset

embedding that is a lattice isomorphism on its image, say u : ^( S ) ® +,

define an operational resolution #pr 5 u + #: 3( S ) ® +. We are now ready

to prove a converse.

Proposition 3. Every operational resolution #pr: 3( S ) ® + `factor-

izes’ into:

(i) A closure operator # on S : #: 3( S ) ® ^( S ) # 3( S ): T j ø [T ].

(ii) A poset embedding that is a lattice isomorphism on its image: u :

^( S ) : 5 im(#) ® +: ^ j #pr(F ).

Proof. (i) We check the closure axioms. (C1) T # ø [T ] is obvious, thus

T # #(T ). (C2) T # U Þ #pr(T ) # #pr(U ) Þ ø [T ] # ø [U ] by Eq. (1)

and order preservation of c 2 1, hence #(T ) # #(U ) follows. (C3) ø [ ø [T ]]

5 ø [T ] by part (ii) of Lemma 1, hence #(#(T )) 5 #(T ). (C4) #( 0/ ) 5
ø [ 0/ ] 5 ø {0¤} 5 0¤. (ii) Denoting ^( S ) for the #-closed subsets of S , we
have by construction and by Proposition 2 that ^( S ) 5 {#(T ) ) T P 3( S ) }

5 {ø [T ] ) T P 3( S ) } 5 {ø [T ] ) [T ] P 3( S )/ , } 5 * ^pr( S ) > im(#pr) #
+, where * follows from the bijection f : 3( S )/ , ® ^pr( S ) and where

im(#pr) # + is a poset embedding. n
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In a first corollary we give some specific features of a #pr: 3( S ) ® +
for which + is a complete lattice. It should be noted that in general im(#pr)

is not a sublattice of +: in particular, the join of elements of the poset im(#pr)
considered as elements of the lattice im(#pr) does not necessarily coincide

with the join of these elements considered as elements of the complete lattice

+. To formally distinguish the two joins, we will use ~ for the join in +,

in contrast to Ú as notation for the join in im(#pr).

Corollary 1. Consider an operational resolution #pr: 3( S ) ® + for

which + is a complete lattice. Then we have the following:

(i) In the presence of Eq. (1) we have " {Ti}i # 3( S ): ~ i#pr(Ti) #
#pr( ø i Ti). As such, if " {Ti}i # 3( S ): #pr( ø i Ti) # ~ i#pr(Ti), then

" {Ti}i # 3( o ): #pr( ø i Ti) 5 ~
i

#pr(Ti) (4)

(ii) Conversely, Eq. (4) implies Eq. (1) and Eq. (2).

Consequently, any map #pr: 3( S ) ® + on a complete lattice + with

join ~ that meets the condition of Eq. (4) is an operational resolution.

In the case where we consider only one S , the powerset of which is

mapped on a poset + through an operational resolution #pr, we can formally

restrict our attention to the case where #pr is surjective: the `relevant’ part
of + for determining the entity’ s operational properties is the complete lattice

im(#pr) and thus we can work with the corestriction #pr: 3( S ) ® im(#pr).

In a second corollary we study surjective operational resolutions.

Corollary 2. If #pr: 3( S ) ® + is a surjective operational resolution,

then + is a complete lattice,11 #pr is a join-preserving, #pr( 0¤) is the bottom

element of +, and #pr( S ) its top element. Moreover, #pr `factors’ in a closure
# and a lattice isomorphism u , that is, #pr 5 u + #, where

(i) #: 3( S ) ® ^( S ) # 3( S ): T j ø {T 8 P 3( S ) ) #pr(T 8) 5 #pr(T ) }.

(ii) u : ^( S ) ® , +: F j #pr(F ).

(iii) u 2 1: + ® , ^( S ): t j ø {T 8 P 3( S ) ) #pr(T 8) 5 t}.

To end this section, we give in a third and last corollary a large class
of surjective operational resolutions that arise `naturally’ in the particular

circumstance that S is a `full set of states’ (Piron, 1976; Aerts, 1982) for a

complete lattice + with join Ú , i.e., S is a subset of + that does not contain

the bottom element, with the property that " t P +: t P Ú {a P S ) a # t}.

Corollary 3. Let S full set of states for a complete lattice +. Then

11 We denote the join of + 5 im(#pr) by Ú .
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#pr: 3( o ) ® +: T j Ú T (5)

is surjective and `factors’ into u + #, where

(i) #: 3( S ) ® ^( S ) # 3( S ): T j {t P S ) t # Ú T }.

(ii) u : ^( S ) ® , +: F j Ú F.

(iii) u 2 1: + ® , ^( S ): t j {a P S ) a # t}.

Two important examples are (i) S 5 + \ {bottom element} for any complete

lattice +, and (ii) if + is atomistic, then S 5 {atoms in + } is a full set of

states in +. The physical motivation for example (i) can be found in Coecke
(1998a). Example (ii) is a translation to our context of the equivalence of

complete atomistic lattices and T1-closure spaces (Aerts, 1994; Moore, 1995):

it can be verified that in the situation of this example the `factor ’ # defines

a T1-closure on S . In any case, the map u 2 1 can be seen as a `generalized

Cartan representation.’

3. STATE TRANSITIONS AND STRUCTURE PRESERVATION

In Amira et al. (1998) we intensively studied a specific kind of `state

transition’ of a physical system in the particular case where the operational

resolution is a T1-closure on a set S of states. Here we intend to give a
generalization of those results. We will consider the not-necessarily determin-
istic state transitions which respect the operational resolution. As in Amira

et al. (1998), we consider a first formalization of this idea by means of a

map f 8: S ® 3( S ): s j f 8(s), where f 8(s) stands for ª the collection of states

that may result after the transition of the physical system from its initial state

sº ; thus 3( S ) as codomain expresses the possible nondeterminedness. If S
is ordered, then obviously f 8 should be order preserving. Implementing a

possible lack of knowledge on the initial state, we equalize domain and

codomain:

f : 3( o ) ® 3( o ): T j ø { f8(s) ) s P T } (6)

Such a map has two characterizing properties:

A 0¤: " T P 3( o ): f(T ) 5 0¤ Û T 5 0¤

A ø : " {Ti}i # 3( o ): f( ø i Ti) 5 ø i f(Ti)

We denote 4(3( S )) 5 { f: 3( S ) ® 3( S ) ) f meets A 0¤, A ø }. We can equip

4(3( S )) with two natural operations: (i) f&f 8 stands for the composition of

transitions, first transition f and then transition f 8; it corresponds to composi-

tion of maps, that is, ( f&f 8) (Ð ) 5 ( f 8 + f )(Ð ), and (ii) ~ i fi stands for the
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transition that represents the choice between the fi , or formally equivalent,

a lack of knowledge on the precise state transition; it corresponds to the

pointwise join in 3( S ), that is, ( ~ i fi)(Ð ) 5 ø i (fi (Ð )). In the next proposition
we show that 4(3( S )) equipped with these operations ~ and & has a quantale

structure, but first we give the exact definitions for quantales and quantale

morphisms.

Definition 3. A quantale Q is a complete join semilattice (Q, ~ ) equipped

with an associative product, & : Q 3 Q ® Q, which satisfies " a, bi P Q:

(i) a&( ~ i bi) 5 ~ i (a&bi).

(ii) ( ~ i bi)&a 5 ~ i (bi&a).

A quantale Q is called unitary if there exists a so-called unit element

e P Q which satisfies " a P Q: e&a 5 a 5 a&e. Given two quantales Q
and Q8, we call F: Q ® Q8 a quantale morphism if it preserves & and ~ .
Given two unitary quantales Q and Q8 with respective units e and e8, we call

F: Q ® Q8 a unitary quantale morphism if it is a quantale morphism such

that F(e) 5 e8. A quantale Q8 is called a subquantale of Q if the injection

I: Q8 , Q: q j q is a quantale morphism. If Q8 and Q are both unitary and

I is a unitary quantale morphism, then Q8 is called a unitary subquantale of Q.

Proposition 4. 4(3( S )) is a unitary quantale.

Proof. First we show that the operations are internal. Let all f, f 8, fi P
4(3( S )) and all T, T 8, Ti , Tj P 3( S ); then:

(i) ( f&f 8)(T ) 5 0¤ Û f 8( f(T )) 5 0¤ Û f(T ) 5 0¤ Û T 5 0¤.

(ii) ( f&f 8)( ø i Ti) 5 f 8( f( ø i Ti)) 5 f 8( ø i f(Ti)) 5 ø i (f 8( f(Ti))) 5
ø i (( f&f 8)(Ti)).

(iii) ( ~ i fi)(T ) 5 0¤ Û ø i (fi (T )) 5 0¤ Û " i: fi (T ) 5 0¤ Û T 5 0¤.

(iv) ( ~ i fi)( ø jTj) 5 ø i ( fi ( ø jTj)) 5 ø i ( ø j fi (Tj)) 5 ø j ( ø i fi (Tj)) 5
ø j (( ~ i fi)(Tj)).

Next we show that & distributes over ~ : (( ~ i fi)&f )(T ) 5 f(( ~ i fi)(T ))

5 f( ø i ( fi (T ))) 5 ø i ( f( fi (T ))) 5 ø i (( fi&f )(T )) 5 ( ~ i ( fi&f ))(T ); analogously

we have ( f&( ~ i fi))(T ) 5 ~ i ( f&fi))(T ). Finally, it is clear that id3( S ) meets

both A 0¤ and A ø , and is the unit of the quantale. n

The correspondence between 3( S ) and im(#pr) through #pr suggests

that a map f P 4(3( S ) is `seen’ through the operational resolution as follows:

fpr: im(#pr) ® im(#pr):

t j #pr( f(T )) for T P 3( S ): #pr(T ) 5 t (7)

This definition requires that, for any t P im(#pr) # +, we choose a T P
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3( S ) for which #pr(T ) 5 t and then set fpr(t) 5 #pr( f(T )). Of course we

need that fpr(t) is independent of the choice for T, which is exactly the

expression of the idea that the state transition f must respect the operational
resolution #pr. We can formulate this condition on an f : 3( S ) ® 3( S )

exactly as

A#: T, T 8 P 3( S ), #pr(T ) 5 #pr(T 8) Þ #pr( f(T )) 5 #pr( f(T 8))

We will denote 4#(3( S )) 5 { f P 4(3( S )) ) f meets A#}. This is the collection
of state transitions that we wanted to describe in the first place. Evidently,

4#(3( S )) inherits the operations ~ and & from 4(3( S )), but there is more.

Proposition 5. 4#(3( S )) is a unitary subquantale of 4(3( S )).

Proof. First we show that both operations ~ and & respect condition
A#. Let f, f 8, fi P 4# (3( S )) and T, T 8 P 3( S ) with #pr(T ) 5 #8 (T 8); then

it follows that (i) #pr( f(T )) 5 #pr( f(T 8)) Þ #pr ( f 8( f(T )) 5 #pr( f 8( f(T 8))
Þ #pr(( f & f 8)(T )) 5 #pr(( f & f 8)(T 8)); (ii) " i: #pr( fi (T )) 5 #pr( fi (T 8)) Þ
Ú i#pr( fi (T )) 5 Ú i#pr( fi (T 8)) Þ #pr( ø i fi (T )) 5 #pr( ø i fi (T 8)) Þ
#pr(( ~ i fi)(T )) 5 #pr (( ~ i fi)(T 8)). Finally, it is trivial that id3( S ) meets A#. n

In the following lemmas we give some crucial properties of the map

Fpr: f j fpr.

Lemma 3. Let all fi , f, f 8 P 4#(3( S )); then:

(i) ( f & f 8)pr 5 fpr & f 8pr, where ( fpr & f 8pr)(Ð ) 5 ( f 8pr + fpr) (Ð ) (com-

position of maps).

(ii) ( ~ i fi)pr 5 ~ i fi,pr, where ( ~ i fi,pr)(Ð ) 5 Ú i ( fi,pr(Ð )) (pointwise

computation).
(iii) (id3( S ))pr 5 idim(#pr).

(iv) fpr meets A 0: fpr(t) 5 0 Û t 5 0, where 0 : 5 #pr( 0¤) and t P im(#pr).

(v) fpr meets A Ú : fpr( Ú i ti) 5 Ú i (fpr(ti)) for all {ti}i # im(#pr).

Proof. For all t, ti P im(#pr) we choose T, Ti P 3( S ) such that #pr (T )

5 t, #pr (Ti) 5 ti. Condition A# ensures that all computations concerning

fpr(t) can be done via fpr (#8(T )) 5 #pr ( f(T )). Then (i)

( f & f 8)pr(#pr(T )) 5 #pr(( f & f 8)(T ))

5 #pr( f8( f(T )))

5 f 8pr(#pr( f(T )))

5 f 8pr( fpr(#pr(T )))

5 ( fpr & f 8pr)(#pr(T ))
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and (ii)

( ~ ~~ ~ ~~ ~ ~~ ~
i

fi)pr(#pr(T )) 5 #pr(( ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
i

fi)(T))

5 #pr( ø i fi (T ))

5 Ú i (#pr( fi (T )))

5 Ú i (fi,pr(#pr(T )))

5 ( ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
i

fi,pr)(#pr(T ))

(iii) (id3( S ))pr(#pr(T )) 5 #pr(id3( S )(T )) 5 #pr(T ).

(iv) fpr(#pr(T )) 5 #pr( f(T )) 5 #pr( 0¤) Û * f(T ) 5 0¤ Û T 5 0¤, where *
uses Eq. (3).

(v) We have

fpr( Ú i#pr(Ti)) 5 fpr(#pr( ø i Ti))

5 #pr( f( ø i Ti))

5 #pr( ø i f(Ti))

5 Ú i#pr( f(Ti))

5 Ú i fpr(#pr(Ti)) n

We denote 4(im(#pr)) 5 {g: im(#pr) ® im(#pr) ) g meets A Ú , A 0}, and

equip this set with ~ and & defined by pointwise computation and composi-
tion of maps, respectively.

Lemma 4. We have (i) 4(im(#pr)) is a unitary quantale, and (ii) 4(im(#pr))

5 { fpr ) f P 4#(3( S )) }.

Proof. (i) Straightforward verification analogous to Proposition 4, the

unit of 4(im(#pr)) is idim(#pr).

(ii) Given g P 4(im(#pr)), define f : 3( S ) ® 3( S ) by setting f(X ) 5
Y Û g(#pr(X )) 5 #pr(Y ). We will prove that f P 4#(3( S )), and that fpr 5 g.

(a) f(T ) 5 0¤ Û g(#pr(T )) 5 #pr( 0¤) 5 : 0 Û #pr(T ) 5 0 Û T 5 0¤,

where we used Eq. (3) in the last step of the reasoning.

(b) By definition of f we have that

" i: g(#pr(Ti)) 5 #pr( f(Ti)) Û Ú i g(#pr(Ti)) 5 Ú i#pr( f(Ti))

Û g( Ú i#pr(Ti)) 5 #pr( ø i f(Ti))

Û g(#pr( ø i Ti)) 5 #pr( ø i f(Ti))

Û f( ø i Ti) 5 ø i f(Ti)
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(c) #pr(T ) 5 #pr(T 8) Þ g(#pr(T )) 5 g(#pr(T 8)) Þ #pr( f(T )) 5
#pr( f(T 8)).

(d) fpr(#pr(T )) 5 #pr( f(T )) 5 g(#pr(T )).

Proposition 6. Fpr: 4#(3( S )) ® 4(im(#pr)): f j fpr is a surjective unitary
quantale morphism.

Proof. Follows from the lemmas above. n

It is easy to see that the above results are indeed a generalization of the

situation described in Amira et al. (1998). Consider as operational resolution

a T1-closure #pr 5 #: 3( S ) ® ^( S ) # 3( S ), that is, S 5 {atoms of ^( S ) }.

Then, according to the above, a state transition is a map f : 3( S ) ® 3( S )

that meets A 0¤, A ø , and A#. Moreover, we have that fpr: ^( S ) ® ^( S ): F j

#( f(T )), where T P 3( S ) is chosen in such a way that #(T ) 5 F. Exploiting
F 5 #(T ) 5 #(#(T )), it follows that fpr(F ) 5 #( f(#(T ))) 5 #( f(T )) and

thus f(#(T )) # #( f(T )). In Amira et al. (1998) this condition is given

the notation

A*: " T P 3( o ): f(#(T )) # #( f(T ))

For a map f : 3( S ) ® 3( S ) that meets A 0¤, A ø , and A
*

it is then argued that

it is `seen’ through the operational resolution as f bis
pr : ^( ( ) ® ^( ( ): F j

#( f (F )). However, it can be easily verified that, concerning a map f : 3( S )
® 3( S ) that meets A 0¤ and A ø , it is equivalent to work with either condition

A# and fpr or condition A* and f bis
pr .

4. CONCLUSIONS, REMARKS, AND FURTHER RESEARCH

Every operational resolution factors in a closure operator and a lattice

isomorphism on its image. As such, it mathematically generalizes the duality

[states % properties], which is also exhibited in the correspondences [underly-

ing set of a closure space % lattice of closed subsets] and [full set of states
% lattice]. Although the codomain of the operational resolution is a poset,

its image has a lattice structure in a natural way. Nondeterministic state

transitions are formalized, and a condition for them to preserve the operational

resolution is derived. The collection of structure-preserving state transitions

forms a unitary quantale, so does their image through the operational resolu-

tion, and between these quantales the operational resolution suggests a natural
surjective quantale morphism.

Within this scheme it is possible to implement aspects of orthogonality,

more or less along the lines of the construction in Aerts (1994) and Valckenb-

orgh (1997). Suppose that there exists an orthogonality relation ’ on +.



3280 Coecke and Stubbe

Then we can define an orthogonality on S by setting p ’ q Û #pr( p) ’
#pr(q), derive an orthocomplementation ’ : 3( S ) ® 3( S ): T j {p P S )
" q P T: p ’ q } and relate to this a closure operator # ’ : 3( S ) ® 3( S ):
T j T ’ ’ , where the collection of closed subsets ^ ’ ( S ) 5 {T # S ) # ’ (T )

5 T } proves to be orthocomplemented. It can be shown that ^pr( S ), equipped

with the above-defined orthogonality relation, is orthocomplemented if and

only if ^ ’ ( S ) 5 ^pr( S ). Obviously, orthocomplementedness of + does not

imply orthocomplementedness of ^pr( S ), not even if im(#pr) is a sublattice

of +. An interesting situation demonstrating this is that of three operational
resolutions related to the coproduct (cf. example in Section 2), where the

orthocomplementations of im(#pr(1)) and im(#pr(2)) do not necessarily imply

an orthocomplementation on im(#pr(1,2)), but where the separated product of

im(#pr(1)) and im(#pr(2)) as codomain + does inherit a orthocomplementation

(Aerts, 1982). It would be worthwhile to investigate the connection between

orthogonality on ^pr( S ) and orthogonality on +, and the implications for the
state transitions as we have studied them in this paper.12 This is of particular

interest in the study of descriptions of compound systems where the structure-

preserving state transitions could play a crucial role (Coecke, 1998a, 1998b).
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